题意不多说,这题是求一个概率。刚开始的时候我并没有思路,想了颇久,最后还是打算看看题解。网上的题解不好理解,但是当我看到一个找三种针之间速度的差距就可以计算出来,我就突然灵机一动,想到了先计算出两种针间每秒的变化速度,然后就像小学的追逐问题一样,计算出时间。一天是24小时,但是我们只需要计算前12个小时就可以了。
然后,将计算出的时间储存起来,变成区间,最后就把问题转变为区间取交的问题了!
运行的时间不会太长,15ms,跟网上某些说跟精度有关的算法不一样,我的是直接计算,所以精度不会影响结果!
代码如下(1y):
View Code
1 #include2 #include 3 #include 4 #include 5 6 // degrees per second 7 const double h_m = (360.0 - 30.0) / 3600; 8 const double h_s = (360.0 * 60 - 30.0) / 3600; 9 const double m_s = (360.0 * 60 - 360.0) / 3600; 10 const double maxt = 43200; 11 const double eps = 1e-6; 12 const int maxn = 800; 13 14 double max2(double a, double b){ return a > b ? a : b;} 15 double min2(double a, double b){ return a < b ? a : b;} 16 17 struct line{ 18 double s, t; 19 }l1[maxn], l2[maxn], l3[maxn], ll[maxn << 2]; 20 21 bool in[maxn]; 22 23 bool cmp(line a, line b){ 24 if (fabs(a.s - b.s) > eps) return a.s < b.s; 25 return a.t < b.t; 26 } 27 28 bool nocross(line a, line b){ 29 return a.s > b.t || b.s > a.t; 30 } 31 // 区间取交 sections intersection 32 void calm(line a[], int n, line b[], int m, line c[], int &k){ 33 k = 0; 34 if (!n || !m) return; 35 int i = 0, j = 0, w; 36 while (i < n && j < m){ 37 if (a[i].s < b[j].s){ 38 for (w = j; b[w].s < a[i].t && w < m; w++){ 39 c[k].s = b[w].s; 40 c[k].t = min2(a[i].t, b[w].t); 41 k++; 42 } 43 j = w; 44 i++; 45 if (j && (!nocross(a[i], b[j - 1]))) j--; 46 } 47 else { 48 for (w = i; a[w].s < b[j].t && w < n; w++){ 49 c[k].s = a[w].s; 50 c[k].t = min2(a[w].t, b[j].t); 51 k++; 52 } 53 i = w; 54 j++; 55 if (i && (!nocross(a[i - 1], b[j]))) i--; 56 } 57 } 58 } 59 60 // deal with the problem 61 double cal(double k){ 62 int T = 0; 63 bool ref = true; 64 double s, t; 65 int n1, n2, n3, n; 66 67 n1 = n2 = n3 = 0; 68 while (ref){ 69 ref = false; 70 s = 360.0 * T + k; 71 t = 360.0 * (T + 1) - k; 72 73 if (s / h_m < maxt){ 74 l1[n1].s = s / h_m; 75 l1[n1].t = t / h_m; 76 if (t / h_m > maxt) l1[n1].t = maxt; 77 n1++; 78 ref = true; 79 } 80 if (s / h_s < maxt){ 81 l2[n2].s = s / h_s; 82 l2[n2].t = t / h_s; 83 if (t / h_s > maxt) l2[n2].t = maxt; 84 n2++; 85 ref = true; 86 } 87 if (s / m_s < maxt){ 88 l3[n3].s = s / m_s; 89 l3[n3].t = t / m_s; 90 if (t / m_s > maxt) l3[n3].t = maxt; 91 n3++; 92 ref = true; 93 } 94 T++; 95 } 96 calm(l1, n1, l2, n2, ll, n); 97 calm(l3, n3, ll, n, l1, n1); // calculate the intersection of three sections 98 99 double sum = 0;100 for (int i = 0; i < n1; i++){101 sum += l1[i].t - l1[i].s;102 }103 // sum up the sections104 105 return sum * 100 / maxt;106 }107 108 109 bool deal(){110 double D;111 112 scanf("%lf", &D);113 if (D < -0.5) return false;114 printf("%.3f\n", cal(D));115 116 return true;117 }118 119 int main(){120 #ifndef ONLINE_JUDGE121 freopen("in", "r", stdin);122 printf("h_m %f\nh_s %f\nm_s %f\n\n", h_m, h_s, m_s);123 #endif124 while (deal());125 126 return 0;127 }
——written by Lyon